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Introduction to Singular Perturbation Problems(SPPs)

The birth of the singular perturbations was introduced by Prandtl
at the Third International Congress of Mathematicians in
Heidelberg in 1904 and it was reported in the proceedings of the
conference .
Many practical problems, such as the mathematical boundary
layer theory or approximation of solutions of various problems are
described by differential equations involving large or small
parameters.
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Let Pε denote the original problem and uε be its solution.
Let P0 denote the reduced problem of Pε (setting ε = 0 in Pε) and u0
be its solution. Then the problem Pε is called a Singularly Perturbed
Problem (SPP) if and only if uε does not converge uniformly to u0 in
the entire domain of the definition of the problem. Otherwise the
problem is called Regularly Perturbed Problem (RPP).
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Example 1.1 (Singular Perturbation Problem)

Pε :

{
εu′ε(x) = −uε(x), x ∈ (0,1],

uε(0) = 1, 0 < ε� 1.

P0 : u0(x) = 0, x ∈ [0,1],

The exact solution of Pε is given by

uε(x) = e−x/ε.
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Note that,

lim
ε→0

lim
x→0

uε(x) = 1 6= 0 = lim
x→0

lim
ε→0

uε(x).

That is, uε(x) does not converge uniformly to the reduced problem
solution on [0,1]. The solution changes very rapidly near the
neighborhood of x = 0. This neighborhood is called a boundary layer.

A singular perturbation problem is said to be of
convection-diffusion type, if the order of the differential equation is
reduced by one when the perturbation parameter is set equal to
zero.
If the order reduces by two, it is known as a reaction-diffusion type
problem.
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Computational method

Using the Boundary Value Technique (BVT) of [3] and basic idea of [2],
we have suggested a new computational method. This method makes
use of the zero order asymptotic expansion approximation, BVT and
Shooting method to obtain a numerical solution for the derivative of
SPBVP for third order ODEs of convection-diffusion type of the form:

εy
′′′

(x) + a(x)y ′′(x)− b(x)y ′(x)− c(x)y(x) = f (x), x ∈ Ω, (1)
y(0) = p, −y ′′(0) = q, y ′(1)− y ′′(1) = r . (2)

where y ∈ C(3)(Ω) ∩ C(2)(Ω̄), 0 < ε� 1, a(x), b(x), c(x) and f (x) are
sufficiently smooth functions satisfying the following conditions .

a(x) ≥ α, α > 0,
b(x) > 0,

0 ≥ c(x) ≥ −γ, γ > 0, α > γ.
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The SPBVP (1)-(2) can be transformed into an equivalent weakly
coupled system of the form:

P1ȳ(x) ≡ −y ′1(x) + y2(x) = 0, x ∈ Ω0 = (0,1],

P2ȳ(x) ≡ εy ′′2 (x) + a(x)y ′2(x)− b(x)y2(x)

−c(x)y1(x) = f (x), x ∈ Ω = (0,1),

y1(0) = p, −y ′2(0) = q, y2(1)− y ′2(1) = r ,

(3)

where ȳ = (y1, y2)T , y1 ∈ C(3)(Ω)∩C(2)(Ω̄), y2 ∈ C(2)(Ω)∩C(1)(Ω̄), the
functions a(x), b(x), c(x) and f (x) are sufficiently smooth functions
satisfying the same conditions given above.
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Analytical Results

Theorem 2.1

(Maximum Principle).Consider the BVP (3). Let y1(0) ≥ 0 , y ′2(0) ≤ 0
and y2(1)− y ′2(1) ≥ 0 . Then P1ȳ(x) ≤ 0, for x ∈ Ω0 and
P2ȳ(x) ≤ 0, for x ∈ Ω, implies that ȳ(x) ≥ 0,∀x ∈ Ω̄.

Lemma 2.2

(Stability Result).If ȳ(x) is the solution of the BVP (3) then

||ȳ(x)|| ≤ C max{|y1(0)|, |y ′2(0)|, |y2(1)− y ′2(1)|, max
x∈Ω0

|P1ȳ(x)|,

max
x∈Ω
|P2ȳ(x)|}, ∀x ∈ Ω̄.
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Asymptotic Expansion Approximation

We look for an asymptotic expansion solution of the BVP (3) in the
form

ȳ(x , ε) = (ū0(x) + v̄0(x)) + ε(ū1(x) + v̄1(x)) + · · ·

By the method of stretching variable [1] one can obtain a zero order
asymptotic approximation as ȳas(x) = ū0(x) + v̄0(x), where
ū0(x) = (u01(x),u02(x))T is the solution of the reduced problem of the
BVP (3) given by

−u′01
(x) + u02(x) = 0,

a(x)u′02
(x)− b(x)u02(x)− c(x)u01(x) = f (x),

u01(0) = p, u02(1)− u′02
(1) = r ,

(4)
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and v̄0(x) = (v01(x), v02(x))T is a layer correction term satisfies
−v ′01

(x) + v02(x) = 0,
εv

′′
02

(x) + a(0)v
′
02

(x) = 0,
v01(0) = −(ε/a(0))v02(0),

v
′
02

(0) = −(q + u
′
02

(0)), v02(1) = exp(−(a(0)/ε))v02(0)

(5)

and this v̄0(x) given by{
v01(x) = −(ε/a(0))(q + u′02

(0)) exp(−(a(0)/ε))(x),

v02(x) = (q + u′02
(0)) exp(−(a(0)/ε))(x).

(6)
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The following theorem gives the bound for the difference between the
solution of the BVP (3) and its zero order asymptotic expansion
approximation.

Theorem 2.3

The zero order asymptotic approximation ȳas = ū0(x) + v̄0(x) of the
solution ȳ(x) of the BVP (3) defined by (4)-(6) satisfies the inequality

||ȳ(x)− ȳas(x)|| ≤ Cε, ∀x ∈ Ω̄.

Corollary 2.4
If y1(x) is the solution of the BVP (3) and u01(x) is the solution of the
problem (4) then |y1(x)− u01(x)| ≤ Cε, ∀x ∈ Ω̄.
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Some analytical and numerical results for second order SPBVP

Consider the auxiliary second order SPBVP

Ly?2 (x) ≡ εy?′′2 (x) + a(x)y?
′

2 (x)− b(x)y?2 (x)

= f (x) + c(x)u01(x), x ∈ Ω, (7)

B0y?2 (0) ≡ −y?
′

2 (0) = q, B1y?2 (1) ≡ y?2 (1)− y?
′

2 (1) = r , (8)

where u01(x) is defined as in (4), a(x), b(x), c(x) and f (x) are
sufficiently smooth and a(x) ≥ α and b(x) > 0, 0 ≥ c(x) ≥ −γ, γ > 0.
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Analytical Results

Theorem 2.5

(Maximum Principle).Consider the BVP (7)-(8). Let y?2 (x) be a
smooth function satisfying B0y?2 (0) ≥ 0 , B1y?2 (1) ≥ 0 and
Ly?2 (x) ≤ 0 for x ∈ Ω. Then, y?2 (x) ≥ 0,∀x ∈ Ω̄.
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Lemma 2.6
(Stability Result). If y?2 (x) is the solution of the BVP (7)-(8) then

|y?2 (x)| ≤ C max{|B0y?2 (0)|, |B1y?2 (1)|, max
x∈Ω
|Ly?2 (x)|},∀x ∈ Ω̄.

Theorem 2.7

If ȳ(x) and y?2 (x) are solutions of the BVP (3) and (7)-(8)
respectively, then |y2(x)− y?2 (x)| ≤ Cε, ∀x ∈ Ω̄.
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Description of the method

Step 1: An asymptotic approximation is derived for the solution of (3)
which is given by (4)-(5).
Step 2: The first component of the solution ȳ(x) of the BVP (3),
namely y1 is approximated by the first component of the solution of the
reduced problem namely u01 given by (4). Then replacing y1 appearing
in the second equation of (3) by u01 and taking the same boundary
values, one gets the auxiliary SPBVP (7)-(8). The solution of this
problem is taken as an approximation to y2 which is the second
equation of (3) which has to be solved.
Step 3: In order to solve the auxiliary second order problem (7)-(8)
numerically, we divide the interval [0,1] into two subintervals [0, τ ]
and [τ,1] called inner and outer region respectively,

where τ = min{1
2
,
ε

α
ln N} .
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Then, from the BVP (7)-(8) two problems namely inner region problem
and outer region problem are derived. To find the boundary condition
at x = τ , a zero order asymptotic expansion is used.
The inner region problem for (7)-(8) is given by{

εy
′′
2 (x) + a(x)y

′
2(x)− b(x)y2(x) = f (x) + c(x)u01(x), x ∈ (0, τ),

−y ′2(0) = q, y2(τ) = u02(τ) + v02(τ) = r̄ .
(9)

The outer region problem for (7)-(8) is given by{
εy

′′
2 (x) + a(x)y

′
2(x)− b(x)y2(x) = f (x) + c(x)u01(x), x ∈ (τ,1),

y2(τ) = u02(τ) + v02(τ) = r̄ , y2(1)− y ′2(1) = r ,
(10)
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Numerical Schemes

Inner region problem:
Step 4: The inner region problem is solved by the Shooting method.
Here,Shooting method in the sense that the BVP (9) is replaced by the
IVP (11) in the interval [0, τ ].
Consider the following IVP:{

εỹ2
′′(x) + a(x)ỹ2

′(x)− b(x)ỹ2(x) = f (x) + c(x)u01(x), x ∈ (0, τ ],

ỹ2(0) = q̄ = u02(0) + v02(0),−ỹ ′2(0) = q.
(11)

This IVP is equivalent to the system

P∗ȳ∗ =


P∗1 ȳ∗ = −y∗1

′(x) + y∗2 (x) = 0,
P∗2 ȳ∗ = εy∗2

′(x) + a(x)y∗2 (x)− b(x)y∗1 (x) = f ∗(x), x ∈ (0, τ ],

y∗1 (0) = q̄,−y∗2 (0) = q,
(12)
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where f ∗(x) = f (x) + c(x)u01(x), ȳ∗ = (y∗1 , y
∗
2 )T , a(x) ≥ α, α >

0, b(x) > 0 and 0 ≥ c(x) ≥ −γ, γ > 0.
Applying the Euler’s Finite Difference scheme on (12),we get

P∗N/2
1 ȳ∗i = −D−y∗1,i + y∗2,i = 0,

P∗N/2
2 ȳ∗i = εD−y∗2,i + a(xi)y∗2,i − b(xi)y∗1,i = f ∗(xi), 1 ≤ i ≤ N/2,

y∗1,0 = q̄,−y∗2,0 = q,
(13)

where, D−y∗j,i = (y∗j,i − y∗j,i−1)/h1, h1 =
2τ
N
, xi = xi−1 + ih1,

j = 1,2. Here, τ is the transition parameter given by

τ = min{1
2
,
ε

α
ln N}. This fitted mesh is denoted by Ω̄

N/2
τ .
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Outer region problem

Step 5: The outer region problem given in (10) is solved by the
Classical Finite Difference (CFD) scheme. Appling the CFD scheme
on (10), we get

LN/2y2,i := εδ2y2,i + a(xi)D+y2,i − b(xi)y2,i

= f (xi) + c(xi)u01(xi),1 ≤ i ≤ N/2− 1,
BN/2

0 y2,0 = r̄ ,BN/2
1 y2,N = y2,N/2 − (y2,N/2 − y2,N/2−1)/h2 = r ,

(14)

where,D+y2,i = (y2,i+1− y2,i)/h2, δ2y2,i = (y2,i+1− 2y2,i + y2,i−1)/h2
2,

xi = xi−1 + ih2, and h2 =
2(1− τ)

N
.

Here, τ is defined as mentioned above. This fitted mesh is denoted by
Ω̄

N/2
τ .
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Step 6:

After solving both the inner region and outer region problems, we
combine their solutions to obtain an approximate solution y2 for the
derivative of the original problem (1)-(2) over the interval Ω̄.
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Error Estimates

Inner region problem

Theorem 2.8

Let ȳ∗ = (y∗1 , y
∗
2 )T and ȳ∗i = (y∗1,i , y

∗
2,i)

T be respectively, the solutions of
(12) and (13). Then

||ȳ∗(xi)− ȳ∗i || ≤ CN−1 ln N for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ
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Theorem 2.9

Let ȳ∗ = (y∗1 , y
∗
2 )T and ȳ∗1 = (y∗11 , y∗12 )T be respectively, the solutions

of the IVP
y∗

′
1 − y∗2 = 0,
εy∗

′
2 + a(x)y∗2 − b(x)y∗1 = f (x) + c(x)u01 , x ∈ Ω,

y∗1 (0) = α, y∗2 (0) = β.

(15)

and 
y1∗′

1 − y1∗
2 = 0,

εy1∗′
2 + a(x)y1∗

2 − b(x)y1∗
1 = f (x) + c(x)u01 , x ∈ Ω,

y1∗
1 (0) = α + O(ε), y1∗

2 (0) = β.

(16)

then, ||ȳ∗(x)− ȳ∗1(x)|| ≤ Cε.
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Theorem 2.10

Let ȳ∗ = (y∗1 , y
∗
2 )T be the solution of the IVP (15). Further, let

ȳ∗i = (y∗1,i , y
∗
2,i)

T be the numerical solution of the IVP (16) after
applying the Euler’s Finite Difference scheme as given in (13).
Then,

||ȳ∗(xi)− ȳ∗i || ≤ Cε+ CN−1 ln N, for 0 ≤ i ≤ N/2 and xi ∈ Ω̄N/2
τ .
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The BVP (7)-(8) is equivalent to the following IVP{
εy ′′2 (x) + a(x)y ′2(x)− b(x)y2(x) = f ∗(x), x ∈ Ω,

y2(0) = q∗, y ′2(0) = −q.
(17)

where q∗ is the exact value of the solution of the BVP (7)-(8) at
x = 0. Because of uniqueness of the solutions of the IVP (17) and the
BVP (7)-(8), we have the following result on the error estimate for the
inner region problem.
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Theorem 2.11

Let y?2 (xi) be the solution of the BVP (7)-(8). Further, let
ȳ∗i = (y∗1,i , y

∗
2,i)

T be the numerical solution of the IVP (13).Then,

|y?2 (xi)− y∗1,i | ≤ Cε+ CN−1 ln N, for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Theorem 2.12

Let ȳ(x) be the solution of the BVP (3) and let ȳ∗i = (y∗1,i , y
∗
2,i)

T be the
numerical solution of the IVP (13). Then,

|y2(xi)− y∗1,i | ≤ Cε+ CN−1 ln N, for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .
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Outer region

Theorem 2.13

Let y2(xi) be the solution of the BVP (10) and y2,i be its numerical
solution given by (14).Then,

|y2(xi)− y2,i | ≤ CN−1 ln N, for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .

Theorem 2.14

Let y?2 (xi) be the solution of the BVP (7)-(8) and y2,i be the numerical
solution of the BVP (10) after applying the CFD scheme as given in
(14).Then,

|y?2 (xi)− y2,i | ≤ Cε+ CN−1 ln N, for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .
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Theorem 2.15

Let ȳ(x) be the solution of the BVP (3) and y2,i be the numerical
approximation obtained for y2(xi) for the BVP (10) after applying the
CFD scheme as given in (14). Then,

|y2(xi)− y2,i | ≤ Cε+ CN−1 ln N, for 0 ≤ i ≤ N/2, xi ∈ Ω̄N/2
τ .
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Numerical Illustrations

We present one example to illustrate the theoretical results for the BVP
(1)-(2). Let ȳ2N

2,i be the piecewise linear interpolants of the numerical
solution yN

2,i on the mesh Ω2N , where N, 2N are the number of mesh
points. For a finite set of values of ε = {2−13, · · · ,2−19}, we compute
the maximum point-wise errors

DN
ε = ||yN

2,i − ȳ2N
2,i ||ΩN , DN = max

ε
DN
ε .

From these quantities the order of convergence are computed from

p∗ = min
N

pN , where, pN = log2

{
DN

D2N

}
.

Numerical... J. Christy Roja Bharathidasan University 29 / 33



Introduction Computational method Conclusions References

Example 2.16

Consider the BVP

εy
′′′

(x) + (2x + 3)2y ′′(x)− 2(2x + 3)y ′(x) + y(x) = 6x ,
y(0) = 0, y ′′(0) = −1, y ′(1)− y ′′(1) = 1.

The numerical results of the problem is presented in the following table.
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Table: Numerical results for y2-Maximum pointwise errors DN
ε , DN and pN of

Example 2.16.

Number of mesh points N
ε 128 256 512 1024 2048 4096

Boundary layer region
2−13 7.8605e-011 5.3932e-011 3.5654e-011 2.1894e-011 1.2857e-011 7.2664e-012
2−14 1.9651e-011 1.3483e-011 8.9138e-012 5.4738e-012 3.2148e-012 1.8165e-012
2−15 4.9127e-012 3.3706e-012 2.2284e-012 1.3678e-012 8.0336e-013 4.5430e-013
2−16 1.2284e-012 8.4244e-013 5.5689e-013 4.1722e-013 4.1722e-013 1.1369e-013
2−17 3.0709e-013 2.1072e-013 1.3922e-013 1.0281e-013 4.9960e-014 4.2100e-013
2−18 4.2100e-013 4.2100e-013 4.2100e-013 4.2100e-013 4.2100e-013 4.2477e-013
2−19 4.2477e-013 4.2477e-013 4.2477e-013 4.2477e-013 4.2477e-013 1.5543e-015

Outer region
2−13 1.9122e-003 8.9488e-004 4.3219e-004 2.1262e-004 1.0583e-004 5.3223e-005
2−14 1.9111e-003 8.9401e-004 4.3148e-004 2.1200e-004 1.0525e-004 5.2634e-005
2−15 1.9105e-003 8.9358e-004 4.3112e-004 2.1170e-004 1.0497e-004 5.2359e-005
2−16 1.9102e-003 8.9336e-004 4.3095e-004 2.1154e-004 1.0483e-004 5.2225e-005
2−17 1.9101e-003 8.9325e-004 4.3086e-004 2.1147e-004 1.0476e-004 5.2160e-005
2−18 1.9100e-003 8.9320e-004 4.3082e-004 2.1143e-004 1.0473e-004 5.2127e-005
2−19 1.9100e-003 8.9317e-004 4.3080e-004 2.1141e-004 1.0471e-004 5.2111e-005
DN 1.9122e-003 8.9488e-004 4.3219e-004 2.1262e-004 1.0583e-004 5.3223e-005

pN 1.0955e+000 1.0500e+000 1.0234e+000 1.0065e+000 p∗9.9163e-001

The order of convergence= 9.9163e-001
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Conclusions

In [3], both inner and outer region problems are BVPs, whereas in
our case the inner region problem is an IVP and the outer region
problem is a BVP.
Though the present method yields almost the first order of
convergence as given in [3], it produces very good reduction on
the maximum-pointwise error especially in layer region compared
with [3].
The main advantage of this method is that due to decoupling the
system, the size of the matrix to be inverted is reduced from
2N − 1 to N − 1. This results in a good reduction of the
computation time.

Numerical... J. Christy Roja Bharathidasan University 32 / 33



Introduction Computational method Conclusions References

References

[1] A.H.Nayfeh, Introduction to Perturbation Methods, John Wiley and
Sons, New York,(1981).

[2] S.Natesan and N.Ramanujam, A Shooting method for Singularly
Perturbation problems arising in chemical reactor theory,
Internationa Journal of Computer Mathematics,70,251-262, (1997)

[3] S.Valarmathi and N.Ramanujam, Boundary Value Technique for
finding numerical solution to boundary value problems for third
order singularly perturbed ordinary differential equations,
International Journal of Computer Mathematics, 79(6), 747-763,
(2002).

Numerical... J. Christy Roja Bharathidasan University 33 / 33



Introduction Computational method Conclusions References

Thank You

Numerical... J. Christy Roja Bharathidasan University 33 / 33


	Introduction to Singular Perturbation Problems
	Computational method
	Conclusions

